Sunday, 18 March 2018

LISTRIK DINAMIK : Arus Listrik


1. Pengertian Arus Listrik
Arus listrik adalah banyaknya muatan listrik yang disebabkan dari pergerakan elektron-elektron, mengalir melalui suatu titik dalam sirkuit listrik tiap satuan waktu. Arus listrik dapat diukur dalam satuan Coulomb/detik atau Ampere.

Didalam suatu penghantar dikatakan ada arus listrik apabila didalam penghantar tersebut terus menerus terjadi pemindahan muatan. Yang dimaksud penghantar adalah suatu bahan konduktor yang didalamnya terdapat muatan-muatan bebas. Muatan-muatan ini akan bergerak jika diantara kedua ujung penghantar terdapat beda potensial yang menimbukan gaya medan listrik.
Gerak muatan listrik
Pada gambar di atas menunjukkan sumber tegangan listrik yang disambungkan ke sebuah penghantar. Pada kutub positif penghantar, muatan negatif akan ditarik oleh muatan positif pada sumber tegangan melewati ruang-ruang kosong (Hole). Hole digambarkan dalam bentuk bulat tanpa tanda negatif (-). Sedangkan pada kutub negatif penghantar, muatan akan terisi elektron baru dari sumber tegangan, sehingga elektron pada penghantar juga terdorong untuk bergerak ke arah kutub posisitif.

Menurut aturan bahwa arus listrik mengalir dari positif ke negatif,sedangkan elektron mengalir dari negatif ke positif. Kenapa bisa begitu? Karena sejatinya aturan berpatokan bahwa elektron berpindah dari negatif ke positif meninggalkan hole dan mengisi hole baru maka seolah-olah hole tersebut bergerak dari positif ke negatif.

Arus listrik merupakan satu dari tujuh satuan pokok dalam satuan internasional. Satuan internasional untuk arus listrik adalah Ampere (A). Secara formal satuan Ampere didefinisikan sebagai arus konstan yang, bila dipertahankan, akan menghasilkan gaya sebesar 2 x 10-7 Newton/meter di antara dua penghantar lurus sejajar, dengan luas penampang yang dapat diabaikan, berjarak 1 meter satu sama lain dalam ruang hampa udara.


Tidak semua bahan bisa menghantarkan elektron dengan baik. Kemampuan penghantar mengalirkan elektron ditentukan oleh susunan atom dari bahan penghantar tersebut. Bahan yang mempunyai kemampuan mengalirkan elektron dengan baik disebut dengan konduktor seperi besi, tembaga, air sumur,dan lain-lain. Sedangkan bahan yang sulit untuk mengalirkan elektron disebut dengan isolator, misalnya plastik, kertas, air murni (H2O), dan lain sebagainya.

2. Pengukuran Arus Listrik
Arus listrik diukur dengan menggunakan satuan ampere (A), sebagai penghargaan kepada penemunya, seorang ahli fisika berkebangsaan Perancis, Andew M Ampere (1775-1836). Bila dalam setiap t (detik) ada sejumlah Q (Coulomb) muatan mengalir melalui kawat penghantar, maka kuat arusnya adalah sebesar :

I= Q/t
dimana I adalah kuat arus listrik.

Untuk muatan I coulomb yang mengalir dalam kawat penghantar selama 1 detik, akan memberikan kuat arus 1 ampere. Jadi 1 ampere adalah sama dengan 1 coulomb/detik.

Kuat arus dapat diukur dengan amperemeter. Agar alat dapat dipakai untuk mengukur kuat arus yang kecil-kecil dan yang besar-besar, maka batas ukurnya dapat diubah-ubah.
Ampere meter
Contoh : 
Batas ukur yang dipakai 50 mA, sedangkan arus listrik yang akan diukur secara teoritis besarnya 150 mA. Maka dengan batas ukur tersebut (=50 mA) alat tidak bisa dipakai, karena 150 mA > 50 mA. Agar alat ukur dapat dipakai, batas ukurannya harus lebih besar dari 150 mA, misalnya 500 mA. 
3. Sumber-sumber Arus Searah
Arus listrik searah (Direct Current atau DC) adalah aliran elektron dari suatu titik yang energi potensialnya tinggi ke titik lain yang energi potensialnya lebih rendah.

Arus searah dulu dianggap sebagai arus positif yang mengalir dari ujung positif sumber arus listrik ke ujung negatifnya. Pengamatan-pengamatan yang lebih baru menemukan bahwa sebenarnya arus searah merupakan arus negatif (elektron) yang mengalir dari kutub negatif ke kutub positif. Aliran elektron ini menyebabkan terjadinya lubang-lubang bermuatan positif, yang “tampak” mengalir dari kutub positif ke kutub negatif.

Contoh dari penggunaan listrik arus searah yaitu penyaluran tenaga listrik komersil yang pertama (dibuat oleh Thomas Alfa Edison di akhir abad ke 19) menggunakan listrik arus searah. Generator komersiel yang pertama di dunia juga menggunakan listrik arus searah.

Di tahun 1883, Nicola Tesla dianugerahi hak paten untuk penemuannya, arus bolak-balik fase banyak. Pada bulan Mei 1883, dia menyampaikan kuliah klasik kepada The American Institute of Electrical Engineers:”A New System of Alternating Current Motors and Tranformers.”

Karena listrik arus bolak-balik lebih mudah digunakan dibandingkan dengan listrik arus searah untuk transmisi (penyaluran) dan pembagian tenaga listrik, di zaman sekarang hampir semua transmisi tenaga listrik menggunakan listrik arus bolak-balik.

Walaupun begitu, pada saat pertama peluncuran arus listrik bolak-balik, arus listrik searah masih tetap digunakan. Bahkan, ada yang tidak mau menerima arus bolak-balik. Dengan perkembangan teknologi elektronika saat ini, listrik arus searah (DC) dapat dihasilkan dengan cara merubah Arus bolak-balik (AC) menjadi Arus Searah (DC) dengan menggunakan suatu alat yang disebut Power Supply atau Adaptor.

Sebagai dasar dari rangkaian Power Supply adalah sebuah komponen diode yang dapat berfungsi sebagai penyearah, artinya adalah dapat merubah dan menyearahkan arus bolak-balik (AC) menjadi Arus Searah (DC).

Semua sumber listrik yang dapat menimbulkan arus listrik terhadap waktu dan arah tertentu disebut sumber-sumber listrik arus searah. Sumber listrik arus searah dibagi menjadi 4 (empat) macam :

1) Elemen Elektro Kimia

Elemen elektrokimia adalah sumber listrik arus searah dari proses kimiawi. Dalam elemen ini terjadi perubahan energi kimia menjadi energi listrik. Elemen elektrokimia dapat dibedakan berdasarkan lama pemakaiannya sebagai berikut.

v  Elemen Primer
Elemen primer adalah sumber listrik arus searah yang memerlukan penggantian bahan setelah dipakai. Contoh elemen primer sebagai berikut:

a) Elemen Volta
Elemen Volta
 Elemen volta adalah sejenis baterai kuno yang diciptakan oleh Alesandro Volta.. Elemen volta masih diterapkan sampai saat ini. Meskipun bentuknya sudah dimodifikasi. Elemen volta terdiri atas 2 elektroda dari logam yang berbeda yang dicelupkan pada cairan asam atau larutan garam. Pada zaman dahulu, cairan asam atau garam tersebut berupa kain yang dicelup dalam larutan garam/asam.

b) Elemen Daniell
Elemen Daniell
Penemu elemen daniel adalah John Frederic Daniell. Elemen Daniell adalah elemen yang gaya gerak listriknya agak lama karena adanya depolarisator. Depolarisator adalah zat yang dapat menghambat terjadinya polarisasi gas hidrogen. Depolarisator pada elemen ini adalah larutan tembaga (sulfat).

c) Elemen Leclanche
Elemen leclanche

Jenis elemen leclanche ada dua macam, yaitu elemen kering dan basah, terdiri atas dua bejana kaca yang berisi:

  • Batang karbon sebagai kutub positif (anoda)
  • Batang seng sebagai kutub negatif (katoda)
  • Batu kawi sebagai depolarisator
  • Larutan amonium klorida sebagai elektrolit


d) Elemen Kering
Element Kering

Elemen kering adalah sumber arus listrik yang dibuat dari bahan-bahan kering yang tidak dapat diisi kembali (sekali pakai). Elemen ini termasuk elemen primer. Contoh elemen kering antara lain, batu baterai dan baterai perak oksida (baterai untuk jam tangan). Bahan untuk kutub positif digunakan batang karbon, dan untuk kutub negatif  digunakan lempeng seng.

v  Elemen Sekunder
Elemen sekunder adalah sumber arus listrik yang tidak memerlukan penggantian bahan pereaksi (elemen) setelah sumber arus habis digunakan. Sumber ini dapat digunakan kembali setelah diberikan kembali energi (diisi atau disetrum).

Contoh dari elemen sekunder yaitu akumulator (aki). Akumulator adalah termasuk sumber listrik yang dapat menghasilkan Tegangan Listrik Arus Searah (DC). Prinsip kerja dari aumulator adalah berdasarkan proses kimia. Secara sederhana, prinsip kerja akumulator dapat dijelaskan sebagai berikut:

a) Pemakaian
Pada saat akumulator dipakai, terjadi pelepasan energi dari akumulator menuju lampu. Dalam peristiwa ini, arus listrik mengalir dari kutub positif ke pelat kutub negatif. Setelah akumulator dipakai beberapa saat, pelat kutub negatif dan positif akan dilapisi oleh sulfat. Hal ini menyebabkan beda potensial kedua kutub menjadi sama dan kedua kutub menjadi netral.

b) Pengisian
Setelah kedua kutub netral dan arus tidak mengalir, kita harus menyetrum aki agar dapat digunakan kembali. Pada saat aki diestrum, arah arus berlawanan dengan pada saat digunakan,yaitu dari kutub negatif ke positif.

Contoh lainnya seperti batu baterai yang digunakan pada telepon genggam (Hp), laptop, kamera, lampu emergensi dll.

2) Generator Arus Searah
Generator DC

Generator arus searah adalah alat yang digunakan untuk mengubah energi gerak (mekanis) menjadi energi listrik dengan arus searah. Generator DC dibedakan menjadi beberapa jenis berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker), jenis generator DC yaitu:
1). Generator penguat terpisah
2). Generator shunt
3). Generator kompon

Generator DC terdiri dua bagian, yang pertama stator, yaitu bagian mesin DC yang diam, dan yang kedua, bagian rotor, yaitu bagian mesin DC yang berputar. Bagian stator terdiri dari: rangka motor, belitan stator, sikat arang, bearing dan terminal box. Sedangkan bagian rotor terdiri dari: komutator, belitan rotor, kipas rotor dan poros rotor. Prinsip kerja generator ini adalah induksi elektromagnetik (perubahan medan magnet yang terjadi pada kumparan kawat sehingga terjadi arus listrik). Pembangkitan tegangan induksi oleh sebuah generator diperoleh melalui dua cara:

  • Dengan menggunakan cincin-seret, menghasilkan tegangan induksi bolak-balik.
  • Dengan menggunakan komutator, menghasilkan tegangan DC.


3) Termoelemen
Termoelemen

Termoelemen adalah sumber arus listrik searah dari proses yang terjadi karena adanya perbedaan suhu. Termoelemen mengubah energi panas menjadi energi listrik. Peristiwa ini dikemukakan oleh Thomas John Seebach pada tahun 1826.

Arus yang ditimbulkan dari kejadian ini disebut termoelemen. Semakin besar perbedaan suhu antara A dan B, semakin besar arus yang mengalir. Tetapi, karena arus yang dihasilkan relatif kecil, termoelemen belum dapat dimanfaatkan dalam kehidupan sehari-hari.

4) Sel Surya (Solar Cell)
Solar Cell
Sel surya atau sel photovoltaic, adalah sebuah alat semikonduktor yang terdiri dari sebuah wilayah-besar dioda p-n junction, di mana, dalam hadirnya cahaya matahari mampu menciptakan energi listrik yang berguna. Pengubahan ini disebut efek photovoltaic. Bidang riset berhubungan dengan sel surya dikenal sebagai photovoltaics.

Sel surya memiliki banyak aplikasi. Mereka terutama cocok untuk digunakan bila tenaga listrik dari grid tidak tersedia, seperti di wilayah terpencil, satelit pengorbit bumi, kalkulator genggam, pompa air, dll. Sel surya (dalam bentuk modul atau panel surya) dapat dipasang di atap gedung di mana mereka berhubungan dengan inverter ke grid listrik dalam sebuah pengaturan net metering. Prinsip kerjanya sebagai berikut.

Jika pelat foil alumunium terkena cahaya matahari, maka pelat alumunium akan panas dan diteruskan ke pelat silikon. Silikon bersifat semikonduktor, sehingga pada suhu yang tinggi, elektron-elektron akan terlepas dan menempel pada foil alumunium dan muatan-muatan positifnya menempel pada foil besi. Jika kedua foil dihubungkan melalui rangkaian luar, maka akan menimbulkan aliran elektron. Ini karena pada kedua foil tersebut, terdapat perbedaan potensial. Potensial yang dibangkitkan oleh sel surya sangat kecil sehingga membutuhkan banyak sekali sel Sel surya juga terlalu mahal sehingga penggunaannya sangat terbatas pada alat-alat tertentu saja.

Besar arusnya pun sangat bergantung pada intensitas cahaya yang menembus pelat, jumlah sel yang ada, dan luas penampang yang terkena cahaya. Contoh barang yang telah menggunakan tenaga surya yaitu, mobil listrik tenaga surya dan sumber energi pada satelit.



0 comments

Post a Comment